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H
SUPERSONIC FLOW IN THE AREA OF ANTISYMMETR IC THIN cauctronu WINGS WITh

SUPERSONIC LEADING EDGES IN A HORIZONTAL PLANE , WITH CONSIDERATION OF

F1.OW SEPARATION ON THE EDGES

Author: Stefan Staicu

1. General Considerations

A study is made of the flow in the supersonic regime in the area of

a thin cruciform wing with an antisymmetric distribution of incident angles.

The horizontal plane has supersonic leading edges and flow separation is considered

along the subsonic leading edge line of the vertical plane.

We shall therefore consider a cruciform wing CSsp.sd of two simple

delta wings perpendicular to one another , and refer it to a system

of Cartesian axes 0x1x2x3 
with an origin in the wing apex and with the axis

Ox1 in the direction of the unperturbed tream U~, (figure 1).
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Let d’ be the equal incidence angles of •ppieite signs along the two halves of

the hor izontal wing, +,9 the incident angles for the upper part of the sheet and
—

~~~~~ f or the lower part.

Analogous to wha t happens for a thin cruciform wing with complete

subsonic edges , in the present case the flow separates at the subsonic

leading edges of the sheets, producing a vortex system located on the right and

lef t sheets as a function of the incident angles d and , which produces anti—

symmetric motion.

Thus the flow is modified by the existence of two vortex apexes sit~iated

antisymmetrically with regard to the axis of synunetry and with the same

int ensit y and sign (figure 1). Below we shall denote by (—r’0 t’0) the coordinates

for the physical plane of the vortex core under which the apex formed at the

edge of the sheet is concentrated .

Since the study of flow is becoming more and more complicated , we shall

try below to find the effects of these vortices on the wing and on the sheet .

Therefore we shall assume that the effect of flow separation at the

leading edges of the sheet and the f ormation of vor tex cores is to create a

complex field of vertical and horizontal verlocities which will modify the flow

in such a way that the velocities are zero at the edge.

Under these considerations the flow in the area of the cruciform system

remains conical longer and can be treated using the methods of conical flow

theory for wings [1].

Proceeding as if the cruciform wing had complete subsonic edges, we

shall consider that an actual thin cruciform ‘wing, which in a way has certain

finite velocities at the edges because of the effect of stream separation, is

equivalent, from an aerodynamic point of view, to a fictitious thin wing with a

convenient variety of incident angles (or Velocities of lateral perturbation).

In order to study the motion with ease, with the ~eth•d of conical motion, we

shall divide the fictitious thin wing into three cisponent wings.

2



1. The thin cruciform wing has antisymmetric incidence on the sheets

and is thus variable, so that there is some pressure modification and of normal

perturbation velocities on the sheet in the vicinity of the leading edge. A

fictitious thin wing is obtained with a finite velocity even at the subsonic edges

of the plates , but equal and of opposite sign on the two sides, which does not

agree with experimental findings .

2. A cruciform wing of “symmetric thickness” with equal sheet slopes

and with the same signs as the first incidents of the component wing. This

wing, combined with the first, will form a tall cruciform wing which will

have different pressures on the two halves of the sheet, somewhat approaching

the real situation .

3. A third wing will have a “symmetric thickness” with variable slope ,

so that in combination with the second wing a mean slope of zero will be found ,

corresponding to an actual thin wing. This wing will have the role of total

compensation for the aerodynamic effects of the second wing in the field of

normal perturbation velocities.

If we superimpose these three component fictitious wings, we shall actually

be totalling their aerodynamic effects. We obtain a cruciform wing equivalent

to a real one , but with consideration of separation on the edge .

2. Axial Pertu rbation Velocities

Below we shall determine the axial perturbation velocities for these three

fictitious component cruciform wings necessary to calculate the pressure

dist ribution on these four arms as though we were determining the aerodynaaic

properties of real wings. We shall now indicate the flow variables and the

planes used.

Starting from the physical plane yOz (figure 1) for the coord ina tes

3
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s (1)

and by transformation 
____________

y zV i — B’ (y + z )  v (2)

we get the auxiliary plane
(3)

z ~~~+i3 .
represented in figure 2.

I-I c,

~~~~~~~~~

;i 
~~

Figure 2.

Starting with figure (2), the height of the sheet and the ordinate of the

cor. position of the vortex created at the leading edge of the sheet, x will be
.

given in the auxiliary plane by the following formumae:
h .

D T T 1~~ ~~~~
, to~~~~~

- ~~~~~~~~~ - . (4)

From plane x we shall plot X in the complex plane (figure 3) through

suitable transformation

(5)

i 1i-~tFigure 3.

which is situated in a horizontal plane on the cruciform wing, similar

to a plane delta wing. However, in order to define the axial perturbation

velocities in primary form, we shall apply the method of hydrodynamic

analogy in the plane 
~ 

(figure 4), defined by the corresponding transformation
I -l-~ ’x (6)I
4
—~~x
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Figure 4.

1. Littisysmietric Thin Cruciform Wing with Variable Incidence

As a result of the effects of these two antieymmetric vortices, the

normal perturbation velocities at the surface of the cruciform wing are

modified to correspond to a real wing, and therefore with the fictitious thin

wing defined above. We shall consider that the vertical velocity on the wing

with the supersonic edges is not modified, because of the existing vortices,

but that the lateral one on the sheet v’ will have the following variations:

(7a)

v’ =~v (,) = —~~~~ (z) t’.., L Z = ~~O, y~
(__ h,__ t,)U(h,1.)I. (7b)

such that the velocity at the sheet edges becomes

V 1 ==—~~1 Vu, . (8)

2h represents the opening of the sheet and to.

is a coordinate which limits the interval of variation of the lateral

velocity on the sheet.

The continual variation in velocities v’ or of the respective incidence angles

corresponds to continuous distribution of elementary edges situated on the

surface within the interval under consideration, while their contributions

in the expression of axial perturbation velocity from point X in plane (6)
will be •

d~U,=ui q (~) ~~~~~~~~~~~~~~~~ di,,
(9,

5 
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in which is the abscissa of the edge stream in the wake of the wing:

~
;
~= ±  V _ i_±_~i_ , T i ~%~’—t~. 

(10)
I i~—~~ T

Below we shall use the source distribution on the wing ~‘~ ( Z ’ ~ ) as the

most simple, corresponding to the conditions imposed by the problem on

lateral velocity v’. Thus, looking in plane X, the intensity of the source

located in the wake of the sheet will be

q (T)  -~ q, 11, T € ( — T ,. T.). (11)

Taking this distribution of sources into consideration and applying the .~ -

f•rmula. established in CefliCal motion theory [1], the axial perturbation

velocity of the first component wing will be obtained by adding up the

contributions of all elementary distributed edges . Thus , proceeding in

plane X through transformation (6) , where we determine the contribution of

the subsonic edges of the sheets and the supersonic ones of the horizontal

planes, we shall obtain the following expression

~~~ 
1r ~

_
~* ~~~~ 

—t- —
~~

- ic,, (arc cos ~“ d~ 
2~~ (L - 

— (12)

— arc co~~
1 (1 ‘~1 I t- 2 q 

c ’ T (~~rg ch 1~
(1 ~‘ ~ ~(I ~

~~ (I .  : : ~) h .0

r~1 ~~~~~- - . - - — 1 d T ,
2 .~ (X t- T)

which, as a result of calculation, becomes: (13)

A ! i— ~~~~~~~~.~~. ’ ‘
- r - - K ,,arc cos~ ’LI/ — 

X V
q~ r I I — ~~ T0 X I -

~ ~~‘ T. X (T ,~, - .\ ) i a ~g ch - - — arg ch - -. +
“b 1 2 ~~~ (X — T,) ~ (X j - T,)

1~~~~
-
~~ ~I ~~~ ‘X ’ arc sin 3~T,

Taking the equation (2) into consideration, we shall obtain the foll owing

expression of the axial perturbation velocity for the points on the wing

(x~~ay, s”z O) . ——  ______________—

if I — B’ ii’ 2 — ?~‘) U I~- u’

—~~~~~i~~~~~1arc ~~~ t~’!.

6
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(c~ .4- l) a r ch jj ( I ’4~ B!t~)U,1 i y I) (14)
~ 

Y g 
~ (1+B’t,’) (i~-t-y’)’

but on the surface of the sheet , where we observe. ’ that

~ =y = 0 . x — — — ’  (15)

we get Ugp O~• 
~~~ 

+ -~~
- K,, arc cos 

~ I h’1 +
q, Vt — B ’h ’ 1 1  ~I n’— z’ l i t  b’ i ’ 

(16)

+ ——-- — —: — u arc cos i,’ — —

sh(I —B ’ z’) ~~B V I — B ’/ t ’ P 1—B’i~
________ 

1/ ,i’— z ’ 
-

— B~1~ 
ar g ch V —

~~~~~ )‘ (i.. __L_) .

2. Cruciform~ Wing of Symmetric Thickness with Slopes Equal to the Incidence

of the First Component Wing

We shall introduce the double cruciform. wing with a symmetrical thicknes

plate in order to remove the accentuated pressure aPices on its intrados.

Proceeding in the same way as in the case of a thin wing, we shall obtain the

following expression for the axial perturbation velocity in plane X:

~Z,=— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ + (17)

l ” 1 -~-~~~X H l  —~ % I )
;- arg ch y 2 ( V  — T) 

d T .

which becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
... (18)

+arg ch

The- expressions of the axial perturbation velocities in the physical plane

will be u,~ == -~- Q,, a rgch  1/ _!~. f~!’_ I~~,1~~ yt) arg ch 1~I B ’( ~
1-~-y ~) 3t~~ [ I B- ( t ~’-~-y °)
B’~ 

_ _ _  
(19) I -

— (r~ 4- y’) arg ch v + 1 T l~~~(l’i~_a~ T_ VI+B Ta)

on the wing surface, and ,,,==--Q ,~arg ch ~~~~~~~~~~~~~~~~ + (20)
B ’( h’— z ’)

.+- g, 1 1 _ B t h I [ hI _ z $ h1~~
_ h  

—

n h ( 1  --— B’z’) t  1 —B ’,~’ I B ’(/ . ’-—~ ’)
if 

~ _____— —— _ a rg ch~~ —-— — +1 _ B* g
~ !i ’(ta~~ ~~~_ 

--
-I.. 

B~ i~~B- )tF~
_T
~~i~)~~

’ I --- B ’i, — P t

on the plate surface.

7
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3. Cruciform~ Wing of Symmetric Thickness Compensating for Slope

We shall compensate for the effect of the wing thickness resulting from

the superposition of the first and second wings by introducing on the wing

surface a new distribution of seurcea of a form which will return the

wing to a mean sero thickness . Normal velocity variations on sheet v”,

created by a new distribution of origins , will correspond to a “wing

compensating for a slope” of symmetric thickness.

Taking equation (11) into con~ideration , we shall choose for the potnt8

of this wing ~.t( t)-~rk , -
‘--- . (—h ~~ t~~ h).

(21)

which in sheet X become
q (T)--’- ’ -I- I ~

. .  - ~~~~~~~~~~~~~~~~~~~~~~ C - b~~ T< ~~) .  (22)

and we get the following expression of axial perturbation velocity:

- 

.~~b n ~‘b 
H ~~ ç 

~~~~a 7 , ~< (23)

( 1[ii -~ .~- \ )  (I ~ T)  lRi  ~— .‘4~X W  -~~ \ if s,’ --

X~arg~ h1 2~~ .V—7) 
-f-a rg ch~ - 

7~
;
~’ t.v —t - T)  

- 

1
d

1 ~~

arg ch --~~~ --- --~
t- I

/

~~t
T
; : 

[ ( I  
--~~~~‘) X’ arg ch ._ t~~__

— (X’ —~f)arg ch 1 .1 $L’1) 
+P 13’(X’— b)

+— ‘ --V i  ~‘~~ ( I  - . Y — 1’ i —
~~~ ’~

.
Calculating the axial perturbation velocities on wing and sheet we get:

~~~~~ !Q,, arg cli ~~~~~~~~~ -1-
---

~~--~-X (24)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +B*~
t)y1arg ch~~~~-~__+

+ ~~ ~~~~~~~ (~i~- B s a ~
_ I) Yi ~~BT

~

or ~~~~~~~~~~~~~~~~~~~~~~~~~ —

1 B’ z’ l—,’z’ (25)__ __
~_ [(h1

_z1)ar~ ch ~~~~~~~~~~~~~~~~~~ B* z* +

÷ -~~ (i 
— V-i — BTF) ~‘j~T~ (3 21 ) .

8
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Observations

a) By superpositioning these three component wings we get a real wing for

which the axial perturbation v~~-3city is the expression:

(26)

which will be antisymetric to the axis of symmetry Ox1, continuous and

different  from zero at origin 0.

b) [f we made h-b , (h.o), in the results obtained, we get the case of a

delta wing with forced antjeynmietry and with supersonic leading edges.

3. Determination of Constants

We calculate the constants Q
1~

, 
~~~ 

q~ , k~ 
in the same way as in a plane

delta wing [3, 9].

Thus, by using some conditions limiting normal perturbation velocities, we

f ind the constants ~~~ which appear in the expression of the axial

perturbation velocity (13). These equations are found beginning with the

compatibility equations
d ’U=—xdl’ = ~~~~~~~~~~~~

(27)

and considering the variations in velocity at one point on a wing or sheet ,

up to a point of zero velocity at the Mach cone. Likewise in the plane delta

wing [3] we shall consider some concentrated Sources at the point of their

distribution with intensity and position ‘f—T ’ given by the equations

Qe 

~f ~~~~~~~~~~~~~~~~~ (28a)
- 

(28b)

which , written in the physical plane , become
I a I~’— 1~

~~~~~~~~~ 
— - ‘ (29a)

2 ~ (I —B 2 J ~’) (1 —B’~~) I -
~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _V 4(I—B ’h ’) -f S (I — B’I’0) 
(29b)

as a function of to which limits the source distribution on the first thin

sheet. We shall write the following equations:

9 
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~‘a~b - 

~~~ A ’
ReB \ I- ’ - dir; --~~ —

•~~
1r~~ ~~. I —~ ( 1 j A

(30a)
.
“~~~~‘ - ‘S . .I~ - - —

p~. I — - d’~i ’ —c
p~.cs 3 A’ ~~ “ ( 30b)

(Key: 1— Ltach Numbers 2-. fing; i— Shest.)
where U ’~ is the axial perturbation velocity of the f i rs t  wing component in the

case of sources concentrated in z—t ’ :
A ~‘ I -~~- V 2 f :~i .r:~I )  j -i’. 

~‘t~i~~ :-~ 
~ ~~io (arc c ls~ - 

2~ - ( L - - - X )  
- - (31)

-~~ I i i l  -
~ ~~

- A )  2
— arc cos - - 

~-I-- ---- -- Q~ argch y — -- -

2 a ( L  .V ’ 2~~~(X 7~~~

1-U i — H . \ H I  ~-‘IO )
— arg ch — — - -  - - -  . -~~- -- - -- -  -- - 

±
2 ~~- k. -t 1~ i — 

~~ —I- x
3

± —- K 1, arc cos ‘
~~ -~~- -~~~~

- -
~~
- Q1arg ch

I (1 /3~ l~’j (1~ — x’) ~r 1 (
12 ~~~~~~~ (1—f-- B ~ )Integrating (30a) on the real axis between the limits of ( C) ,~,) ~~

( 30b) on the imaginary axis between ~~~~~ in the complex plane x , we obtain

the constant

K (32)

and also the equation — —

! ~~~ ~~~~~~~~~~ I K ( k) — - —--~ ——n(Q, , k) +
~t T~!i

2 I -i-- B’ 
~~ I ~~

‘ — (33)

4- 
~

, l s i ’ ” ’~ 
__
~

___ fl ( QI . k~1=v l.
where the module k and the parameters 1O1,,02 of the complete eftiptical

integrals which appear are

1’ 
_______

• ~~~
= h. _ 1I2 

- (34)
I -r- D ii

From the condition of finite velocity at the subsonic edges of the sheets

(x u ± i~ ) we reduce
a,,= A ,3 ~=0 . (35)

The constant is calculated by us by determining 
~~ 

for the f i rst  time

from equa tion (31) . Starting with equation

t dv ’ (36)
— 

~~~~

—

~~~~

-

~~~

- 
~~~~

10
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deduced from the theory of conical movements [1], and taking into consideration

the fact that 
~~~~~ 

taken from (11) can also be written thus in plane x,
Sq,(t) = 

b ( l — B ’ t’)’ (37)

we will write the equations :
(11

•, L.~ (I —B ’: ’)  ~ i ~~~~~~ (38a)
~) ,I .

• ,, ~~~~ (38b)
v,t, -f - v’ 1 — ‘ I d v ’~= v h .

I. .11,

These equations were written by placing limiting conditions at points

t—t and t—h for the lateral velocity v ’, as well as the condition of real

incidence in order to obtain the mean incidenCe.

As a result of calculations, we deduce from (38a) and (38b ) the equations :

qs (h ~~ I _ _ Bh I~ _ _ I o~~i _ _ B ’h*)  -
~~~ (t’ , —~‘1)h ~ 1 - — B I ~. (39a)

q, (V~~~’~-— l!T B -1~)=(v ,
_ t-) B’h 2 lf i — B ’1 ~

. (39b)

Next we introduce v1 from (39b) and from (28a) and obtain the constant

• q in the following form: 2 1! / 
‘
~~~~

‘— 

[K (k)— —~‘_--—— fl ~~~ k) ]  a —
I ( I r B~~~) 

__~~~~~~~~~ _~~~ ‘~ — -~ (40)- — 

!_ 
~
“ i~ ~/ (

~~1 - - t~~~~) (1 ‘- 13~T ’~ 11 K k fl k
~ k ~~~ 

) 
~ I, -f.b2~’) ~ — ~ 

~~~“ 
) —F.

+~ j 1Vit B ~1 
~J 1_ F -~-

B1(9 t~
2_ 5

~
,1)1.

Equation (39a) was used to determine the velocity v on the sheet. The

constant k
t 
found in expression (23) is determined by beginning with an equation

similar to (38b) and writing the equation for measuring the normal velocities

on the sheets of the three component wings, which will have a mean slope equal

to —v:

.0  0 .0  (41)

Equation (41), in consideration of (21) , becomes

3 B’ h ’(t ’ — k~ [I — (I — B~ I,93/2J, (42)

which, united with (39a), determines the constant

k,~~~— --  --~~~~~~~‘ - - -- ( I  — I;LI!I?\ . (
~~

)
1 —(1 — 8 h~,

31’ I 1 — B’

_ _ _ _ _ _ _  - 
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4. Distribution of Pressure and Aerodynamic Properties

Calculation of the coefficient of pressure on the wing and sheet is made

by using the formula -~C~~- - —2 - - - ~-~— -- -- - R~”J ,
U.J (44)

In which the expressions for axial perturbation velocities U
a or U , obtained

from equation (26), are introduced in turn (figure 5).

- •

~~~~ 

~S~
\5
\

~ ~ 
- 

.?
4”/ i  I

- 

~I I i ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
~~~~~ 1 -

i c
~~~~~,20 qe 0I -

a. — -—— •~~~~ -~~~ ~~~~ — —— —

I 82 ’~ 25 ~~~~~
k- --- --—-- ------- --- - ~~

,

Figure 5. Key: 1—linear theory, 2—present theory

The coefficient of lift for both sheets or the wing is found by using formula [2]:

I c u d (45)jj_ sme
U~~~~~~ ‘° 

y
~

12
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for the wing region comprised by the interior of the Mach cone,
1 1  1 \ .  1 1  1~~4a— it -— ~— i L ~~~~- - i 1 — i ’ (46)2 k  8) 2 k  8)8

for the outside region

~~ ~~~~ --- -f-— Ugp dz ,hU. . (47)

for the entire subsonic sheet ~~4

(48)

for the entire horizontal wing.
a-

The coefficient of moment of rolling is given by the following formulae;

u, 0ydy ,  (49)
3 1 . . . o

where the horizontal plane and

! Ic mp~~~
_

~~._ c u,p z d z , (50)

for the yert~cal plane, in which Ula and u1 are given by (14) and (16) .

In order to define the parameter ~o we shall observe for the f irst  time
h

that the position of maximum pressure distribution coincides with that of the

center of the vortex core , as is found by experimentation . On the

other hand, by basing calculations on the distribution of selected SOV.1C18 we

• find that the apex of depression on the sheet extrados falls approximately -

in the center of gravity of the source intensity ~,ith position t’.given by (29b).

To continue we shall use the formula
1’,
h~~~~i ~~1 ,7(~ 

~~~~~~~~~~~~~~~~~~~ (51)

to define the position of the center of the vortex core in which is the

sheet incidence while / is a supplementary incidencecreated by interference

between the E.ng and the sheet , proportional to c~ . I.s a result , if CL-s O ,

then L~3~ o.

5. The Si.pltfied Case of Concentrated 5OUZCCC

Assuming in a simplified way that the normal velocity at the surface of a

sheet has a sudden ~uap into the center of a vortex core , equivalent to a

sudden inciden t jump , we solv, the problem from the hydrodynamic point of view

by placing several concentrated UrcSs at points t ’0 and —t ’
0 of intensity Q~and —ge.

13
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The expressions of the axial perturbation velocities will be as follows: U

tz~~~-~ J~~ -- A’ - - - -  K j0(a F - i ~~~~~~ 
(I — ;i - A )  

(52)

U — .~‘L ( I — — -~t’.\ 1 2 , l~~ ~-~~‘ X ( I — - — 5’i~T~i—ar c cos -- - - - i ~-—Q ,ia rgch -- - . -
~~~ 

-

2 x~’(L-f X) I it

1 ( 1  ~ / )  \— arg~h - -  

1~) J ’ ’  ~ ~ -
~~~~~

- I

2 ~~~~~~~~~~~~~~~~~~~~~~~~ ~‘) 2 ] ( ? )~ -~-x ’) ( I t- ‘~~
‘.~)

± —— K 10 arc~oe v —- - - -
~~~~~~~~~ 

- -—---- J - ——- Q arg ch i ’ — ---- - -  — 

a ‘ (I -4- 8’ ~~2j (/‘ — 
~~
‘) ~~ V 

(T ,~j
1

~~1~ x~) (1 -1—h ’ ~,‘)
for a lifting cruciform wing,

+ arg ch - ± Q,, argch j’~- - - ~--~---- ±2~~ (X -i-- T~) I

2 1r 1 ~~~~~~~~± — Q, org ch V ~-r~~~~~w b ’(~ +x ’)
for a wing of syimnetric thickness, and 

(54)
‘tt

.
c = ‘tic p

for the third component wing.

The pressure distribution is found by substituting in (45) its expression

U given by (26) in which U’
1
, U’

s
, and U’ come from (52), (53) and (54). The

aerodynamic coefficients are found in the same way as in the case of

distributed s urcea in which constants 
~lO’ K10, ~~ 

and k
t 
appear, deduced

from equations

(55a)

(55b)

~~~~~~~~~ ‘i_ ~ —~ (55c)
V t— a ’ :0’ •

and from (33), and (42: 1/ p~~~ s r  ii
2 I! - — I K(k) — - - fl (Q,, k) a— ~.PL = _ _ _  

_ _ _ _ _ _ —

U”, 
~~ (

~~~~~~ o~~~~± 8 t , )  [ IC (k) — - - -
~~
-—-  fl (

~I + B’ () ~ I. I’ — TO
2

- ~!_ 1f_! -4- ’-~’~”~ P
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k 3R’h1 I—’3’ i’~ (56b )
0, 
— 

— ~,1 — B’ h’)31~

in which k, ~~ and are taken from (34). The constant K10 is the same as

in (32).

Observations

a) The positions of the vortices are determined both from q~and(~3 , as

is seen in (51). a � O  —

b) If 0, ; the ant isyimuetric flow with vortices is again

found.

c) Making 
~~~~~ 

in the expression of axial velocity U in the linear theory,

we get from the expression for a10,calculated in [5], the condition

as an antisymmetric cruciform wing in order to have finite velocities at the

edge, avoiding the appearance of vortices :

_E. — 
, s /V(, s —i-- 1”) (1 -4- F’ )i’) . 

(57)
— 

2 J (1’ ± t”) K (k)—~ ’fl (1/1, k)J

From the same equation we deduce the suj~1ementary incidence induced by the

wing on the sheet when 5 —0:

2i_~’
-—
~ 

%j)~ 
K ( k)  — ~)‘fl (pa, k~J a , (58)

it! ~(I ’ —I— ~‘) (1 - t-- b’ ~‘)
introduced in (51).
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